If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9c^2-12c-68=0
a = 9; b = -12; c = -68;
Δ = b2-4ac
Δ = -122-4·9·(-68)
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-36\sqrt{2}}{2*9}=\frac{12-36\sqrt{2}}{18} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+36\sqrt{2}}{2*9}=\frac{12+36\sqrt{2}}{18} $
| -5(2t-6)=-40 | | 0=-1.5x | | 6x+48-2x-8=24 | | 7x-1/6+2x=16-x/5 | | 6x-10-x-(2x-3)=1-(2x-5) | | 7(2l+6)=196 | | 5(a-3)=105 | | 5x-10=3x-3+3 | | 10x-30=36x-108 | | -3x+1/3=0 | | 13=13x/(1x) | | 13=13x(1x) | | 3x+8=4(x-0) | | 4x+1+3x-5=2x-4+30 | | x+1,3=0,6x-0,9 | | 2+x-1=18-x+3 | | 3(52)/5x=7,5 | | p^2+4=1 | | p^2+4=-1 | | 2x=6/x | | p^2+7=7 | | x+1,3=0,6-0,9 | | 4x^2+14x-99=0 | | p^2+10=19 | | 4x^2+14x+99=0 | | (2p*p-18p+36)=1 | | -2.9w-3.2=-1.6w+0.31 | | 2x+2(x+8) =164 | | -2.9w−3.2=-6.1w+0.31-2.1w-3.2=-1.6w+0.31 | | X4-45x2-324=0 | | 10y-2y=96-4y | | a+3=9-2 |